3.4.20 \(\int \frac {x^3 \sqrt {1-c^2 x^2}}{(a+b \cosh ^{-1}(c x))^2} \, dx\) [320]

Optimal. Leaf size=350 \[ -\frac {x^3 \sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\sqrt {1-c x} \text {Chi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{8 b^2 c^4 \sqrt {-1+c x}}-\frac {3 \sqrt {1-c x} \text {Chi}\left (\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right ) \sinh \left (\frac {3 a}{b}\right )}{16 b^2 c^4 \sqrt {-1+c x}}-\frac {5 \sqrt {1-c x} \text {Chi}\left (\frac {5 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right ) \sinh \left (\frac {5 a}{b}\right )}{16 b^2 c^4 \sqrt {-1+c x}}-\frac {\sqrt {1-c x} \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 b^2 c^4 \sqrt {-1+c x}}+\frac {3 \sqrt {1-c x} \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{16 b^2 c^4 \sqrt {-1+c x}}+\frac {5 \sqrt {1-c x} \cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{16 b^2 c^4 \sqrt {-1+c x}} \]

[Out]

-1/8*cosh(a/b)*Shi((a+b*arccosh(c*x))/b)*(-c*x+1)^(1/2)/b^2/c^4/(c*x-1)^(1/2)+3/16*cosh(3*a/b)*Shi(3*(a+b*arcc
osh(c*x))/b)*(-c*x+1)^(1/2)/b^2/c^4/(c*x-1)^(1/2)+5/16*cosh(5*a/b)*Shi(5*(a+b*arccosh(c*x))/b)*(-c*x+1)^(1/2)/
b^2/c^4/(c*x-1)^(1/2)+1/8*Chi((a+b*arccosh(c*x))/b)*sinh(a/b)*(-c*x+1)^(1/2)/b^2/c^4/(c*x-1)^(1/2)-3/16*Chi(3*
(a+b*arccosh(c*x))/b)*sinh(3*a/b)*(-c*x+1)^(1/2)/b^2/c^4/(c*x-1)^(1/2)-5/16*Chi(5*(a+b*arccosh(c*x))/b)*sinh(5
*a/b)*(-c*x+1)^(1/2)/b^2/c^4/(c*x-1)^(1/2)-x^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)/b/c/(a+b*arccosh
(c*x))

________________________________________________________________________________________

Rubi [A]
time = 0.47, antiderivative size = 350, normalized size of antiderivative = 1.00, number of steps used = 22, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {5942, 5887, 5556, 3384, 3379, 3382} \begin {gather*} \frac {\sqrt {1-c x} \sinh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 b^2 c^4 \sqrt {c x-1}}-\frac {3 \sqrt {1-c x} \sinh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{16 b^2 c^4 \sqrt {c x-1}}-\frac {5 \sqrt {1-c x} \sinh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{16 b^2 c^4 \sqrt {c x-1}}-\frac {\sqrt {1-c x} \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 b^2 c^4 \sqrt {c x-1}}+\frac {3 \sqrt {1-c x} \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{16 b^2 c^4 \sqrt {c x-1}}+\frac {5 \sqrt {1-c x} \cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{16 b^2 c^4 \sqrt {c x-1}}-\frac {x^3 \sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*Sqrt[1 - c^2*x^2])/(a + b*ArcCosh[c*x])^2,x]

[Out]

-((x^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2])/(b*c*(a + b*ArcCosh[c*x]))) + (Sqrt[1 - c*x]*CoshIntegr
al[(a + b*ArcCosh[c*x])/b]*Sinh[a/b])/(8*b^2*c^4*Sqrt[-1 + c*x]) - (3*Sqrt[1 - c*x]*CoshIntegral[(3*(a + b*Arc
Cosh[c*x]))/b]*Sinh[(3*a)/b])/(16*b^2*c^4*Sqrt[-1 + c*x]) - (5*Sqrt[1 - c*x]*CoshIntegral[(5*(a + b*ArcCosh[c*
x]))/b]*Sinh[(5*a)/b])/(16*b^2*c^4*Sqrt[-1 + c*x]) - (Sqrt[1 - c*x]*Cosh[a/b]*SinhIntegral[(a + b*ArcCosh[c*x]
)/b])/(8*b^2*c^4*Sqrt[-1 + c*x]) + (3*Sqrt[1 - c*x]*Cosh[(3*a)/b]*SinhIntegral[(3*(a + b*ArcCosh[c*x]))/b])/(1
6*b^2*c^4*Sqrt[-1 + c*x]) + (5*Sqrt[1 - c*x]*Cosh[(5*a)/b]*SinhIntegral[(5*(a + b*ArcCosh[c*x]))/b])/(16*b^2*c
^4*Sqrt[-1 + c*x])

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5887

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Cosh
[-a/b + x/b]^m*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5942

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^m*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (
Dist[f*(m/(b*c*(n + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2)
*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x] - Dist[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*
x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[
c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[2*p, 0
] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]

Rubi steps

\begin {align*} \int \frac {x^3 \sqrt {1-c^2 x^2}}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {x^3 \sqrt {-1+c x} \sqrt {1+c x}}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {x^3 (1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}-\frac {\left (3 \sqrt {1-c^2 x^2}\right ) \int \frac {x^2}{a+b \cosh ^{-1}(c x)} \, dx}{b c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (5 c \sqrt {1-c^2 x^2}\right ) \int \frac {x^4}{a+b \cosh ^{-1}(c x)} \, dx}{b \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {x^3 (1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}-\frac {\left (3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\cosh ^2(x) \sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (5 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\cosh ^4(x) \sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^4 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {x^3 (1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}-\frac {\left (3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \left (\frac {\sinh (x)}{4 (a+b x)}+\frac {\sinh (3 x)}{4 (a+b x)}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (5 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \left (\frac {\sinh (x)}{8 (a+b x)}+\frac {3 \sinh (3 x)}{16 (a+b x)}+\frac {\sinh (5 x)}{16 (a+b x)}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{b c^4 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {x^3 (1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\left (5 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\sinh (5 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{16 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (5 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\sinh (3 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (15 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\sinh (3 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{16 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {x^3 (1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\left (5 \sqrt {1-c^2 x^2} \cosh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 \sqrt {1-c^2 x^2} \cosh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 \sqrt {1-c^2 x^2} \cosh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (15 \sqrt {1-c^2 x^2} \cosh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{16 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (5 \sqrt {1-c^2 x^2} \cosh \left (\frac {5 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {5 a}{b}+5 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{16 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (5 \sqrt {1-c^2 x^2} \sinh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 \sqrt {1-c^2 x^2} \sinh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 \sqrt {1-c^2 x^2} \sinh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (15 \sqrt {1-c^2 x^2} \sinh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{16 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (5 \sqrt {1-c^2 x^2} \sinh \left (\frac {5 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {5 a}{b}+5 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{16 b c^4 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {x^3 (1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\sqrt {1-c^2 x^2} \text {Chi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right ) \sinh \left (\frac {a}{b}\right )}{8 b^2 c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {3 \sqrt {1-c^2 x^2} \text {Chi}\left (\frac {3 a}{b}+3 \cosh ^{-1}(c x)\right ) \sinh \left (\frac {3 a}{b}\right )}{16 b^2 c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {5 \sqrt {1-c^2 x^2} \text {Chi}\left (\frac {5 a}{b}+5 \cosh ^{-1}(c x)\right ) \sinh \left (\frac {5 a}{b}\right )}{16 b^2 c^4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\sqrt {1-c^2 x^2} \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )}{8 b^2 c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {3 \sqrt {1-c^2 x^2} \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 a}{b}+3 \cosh ^{-1}(c x)\right )}{16 b^2 c^4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {5 \sqrt {1-c^2 x^2} \cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 a}{b}+5 \cosh ^{-1}(c x)\right )}{16 b^2 c^4 \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.56, size = 322, normalized size = 0.92 \begin {gather*} \frac {\sqrt {1-c^2 x^2} \left (16 b c^3 x^3-16 b c^5 x^5+2 \left (a+b \cosh ^{-1}(c x)\right ) \text {Chi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right ) \sinh \left (\frac {a}{b}\right )-3 \left (a+b \cosh ^{-1}(c x)\right ) \text {Chi}\left (3 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right ) \sinh \left (\frac {3 a}{b}\right )-5 a \text {Chi}\left (5 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right ) \sinh \left (\frac {5 a}{b}\right )-5 b \cosh ^{-1}(c x) \text {Chi}\left (5 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right ) \sinh \left (\frac {5 a}{b}\right )-2 a \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )-2 b \cosh ^{-1}(c x) \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )+3 a \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )+3 b \cosh ^{-1}(c x) \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )+5 a \cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (5 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )+5 b \cosh ^{-1}(c x) \cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (5 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )\right )}{16 b^2 c^4 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*Sqrt[1 - c^2*x^2])/(a + b*ArcCosh[c*x])^2,x]

[Out]

(Sqrt[1 - c^2*x^2]*(16*b*c^3*x^3 - 16*b*c^5*x^5 + 2*(a + b*ArcCosh[c*x])*CoshIntegral[a/b + ArcCosh[c*x]]*Sinh
[a/b] - 3*(a + b*ArcCosh[c*x])*CoshIntegral[3*(a/b + ArcCosh[c*x])]*Sinh[(3*a)/b] - 5*a*CoshIntegral[5*(a/b +
ArcCosh[c*x])]*Sinh[(5*a)/b] - 5*b*ArcCosh[c*x]*CoshIntegral[5*(a/b + ArcCosh[c*x])]*Sinh[(5*a)/b] - 2*a*Cosh[
a/b]*SinhIntegral[a/b + ArcCosh[c*x]] - 2*b*ArcCosh[c*x]*Cosh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]] + 3*a*Cosh
[(3*a)/b]*SinhIntegral[3*(a/b + ArcCosh[c*x])] + 3*b*ArcCosh[c*x]*Cosh[(3*a)/b]*SinhIntegral[3*(a/b + ArcCosh[
c*x])] + 5*a*Cosh[(5*a)/b]*SinhIntegral[5*(a/b + ArcCosh[c*x])] + 5*b*ArcCosh[c*x]*Cosh[(5*a)/b]*SinhIntegral[
5*(a/b + ArcCosh[c*x])]))/(16*b^2*c^4*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1028\) vs. \(2(308)=616\).
time = 5.94, size = 1029, normalized size = 2.94

method result size
default \(\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-16 \sqrt {c x +1}\, \sqrt {c x -1}\, x^{5} c^{5}+16 x^{6} c^{6}+20 \sqrt {c x +1}\, \sqrt {c x -1}\, x^{3} c^{3}-28 c^{4} x^{4}-5 \sqrt {c x +1}\, \sqrt {c x -1}\, x c +13 c^{2} x^{2}-1\right )}{32 \left (c x +1\right ) c^{4} \left (c x -1\right ) \left (a +b \,\mathrm {arccosh}\left (c x \right )\right ) b}-\frac {5 \sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \expIntegral \left (1, 5 \,\mathrm {arccosh}\left (c x \right )+\frac {5 a}{b}\right ) {\mathrm e}^{\frac {b \,\mathrm {arccosh}\left (c x \right )+5 a}{b}}}{32 \left (c x +1\right ) c^{4} \left (c x -1\right ) b^{2}}+\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-4 \sqrt {c x +1}\, \sqrt {c x -1}\, x^{3} c^{3}+4 c^{4} x^{4}+3 \sqrt {c x +1}\, \sqrt {c x -1}\, x c -5 c^{2} x^{2}+1\right )}{32 \left (c x +1\right ) c^{4} \left (c x -1\right ) \left (a +b \,\mathrm {arccosh}\left (c x \right )\right ) b}-\frac {3 \sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \expIntegral \left (1, 3 \,\mathrm {arccosh}\left (c x \right )+\frac {3 a}{b}\right ) {\mathrm e}^{\frac {b \,\mathrm {arccosh}\left (c x \right )+3 a}{b}}}{32 \left (c x +1\right ) c^{4} \left (c x -1\right ) b^{2}}-\frac {\sqrt {-c^{2} x^{2}+1}\, \left (4 \sqrt {c x +1}\, \sqrt {c x -1}\, b \,c^{2} x^{2}+4 b \,c^{3} x^{3}+3 \expIntegral \left (1, -3 \,\mathrm {arccosh}\left (c x \right )-\frac {3 a}{b}\right ) \mathrm {arccosh}\left (c x \right ) {\mathrm e}^{-\frac {3 a}{b}} b +3 \expIntegral \left (1, -3 \,\mathrm {arccosh}\left (c x \right )-\frac {3 a}{b}\right ) {\mathrm e}^{-\frac {3 a}{b}} a -\sqrt {c x +1}\, \sqrt {c x -1}\, b -3 b c x \right )}{32 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{4} b^{2} \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}-\frac {\sqrt {-c^{2} x^{2}+1}\, \left (16 \sqrt {c x +1}\, \sqrt {c x -1}\, b \,c^{4} x^{4}+16 b \,c^{5} x^{5}-12 \sqrt {c x +1}\, \sqrt {c x -1}\, b \,c^{2} x^{2}-20 b \,c^{3} x^{3}+5 \,\mathrm {arccosh}\left (c x \right ) \expIntegral \left (1, -5 \,\mathrm {arccosh}\left (c x \right )-\frac {5 a}{b}\right ) {\mathrm e}^{-\frac {5 a}{b}} b +\sqrt {c x +1}\, \sqrt {c x -1}\, b +5 \expIntegral \left (1, -5 \,\mathrm {arccosh}\left (c x \right )-\frac {5 a}{b}\right ) {\mathrm e}^{-\frac {5 a}{b}} a +5 b c x \right )}{32 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{4} b^{2} \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}-\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right )}{16 \left (c x +1\right ) c^{4} \left (c x -1\right ) \left (a +b \,\mathrm {arccosh}\left (c x \right )\right ) b}+\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \expIntegral \left (1, \mathrm {arccosh}\left (c x \right )+\frac {a}{b}\right ) {\mathrm e}^{\frac {a +b \,\mathrm {arccosh}\left (c x \right )}{b}}}{16 \left (c x +1\right ) c^{4} \left (c x -1\right ) b^{2}}+\frac {\sqrt {-c^{2} x^{2}+1}\, \left (\mathrm {arccosh}\left (c x \right ) {\mathrm e}^{-\frac {a}{b}} \expIntegral \left (1, -\mathrm {arccosh}\left (c x \right )-\frac {a}{b}\right ) b +\sqrt {c x +1}\, \sqrt {c x -1}\, b +{\mathrm e}^{-\frac {a}{b}} \expIntegral \left (1, -\mathrm {arccosh}\left (c x \right )-\frac {a}{b}\right ) a +b c x \right )}{16 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{4} b^{2} \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}\) \(1029\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/32*(-c^2*x^2+1)^(1/2)*(-16*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^5*c^5+16*x^6*c^6+20*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^3
*c^3-28*c^4*x^4-5*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+13*c^2*x^2-1)/(c*x+1)/c^4/(c*x-1)/(a+b*arccosh(c*x))/b-5/32*
(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,5*arccosh(c*x)+5*a/b)*exp((b*arccosh(c*x)
+5*a)/b)/(c*x+1)/c^4/(c*x-1)/b^2+1/32*(-c^2*x^2+1)^(1/2)*(-4*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^3*c^3+4*c^4*x^4+3*(
c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c-5*c^2*x^2+1)/(c*x+1)/c^4/(c*x-1)/(a+b*arccosh(c*x))/b-3/32*(-c^2*x^2+1)^(1/2)*(
-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,3*arccosh(c*x)+3*a/b)*exp((b*arccosh(c*x)+3*a)/b)/(c*x+1)/c^4
/(c*x-1)/b^2-1/32*(-c^2*x^2+1)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*(4*(c*x+1)^(1/2)*(c*x-1)^(1/2)*b*c^2*x^2+4*b*
c^3*x^3+3*Ei(1,-3*arccosh(c*x)-3*a/b)*arccosh(c*x)*exp(-3*a/b)*b+3*Ei(1,-3*arccosh(c*x)-3*a/b)*exp(-3*a/b)*a-(
c*x+1)^(1/2)*(c*x-1)^(1/2)*b-3*b*c*x)/c^4/b^2/(a+b*arccosh(c*x))-1/32*(-c^2*x^2+1)^(1/2)/(c*x-1)^(1/2)/(c*x+1)
^(1/2)*(16*(c*x+1)^(1/2)*(c*x-1)^(1/2)*b*c^4*x^4+16*b*c^5*x^5-12*(c*x+1)^(1/2)*(c*x-1)^(1/2)*b*c^2*x^2-20*b*c^
3*x^3+5*arccosh(c*x)*Ei(1,-5*arccosh(c*x)-5*a/b)*exp(-5*a/b)*b+(c*x+1)^(1/2)*(c*x-1)^(1/2)*b+5*Ei(1,-5*arccosh
(c*x)-5*a/b)*exp(-5*a/b)*a+5*b*c*x)/c^4/b^2/(a+b*arccosh(c*x))-1/16*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)
^(1/2)*x*c+c^2*x^2-1)/(c*x+1)/c^4/(c*x-1)/(a+b*arccosh(c*x))/b+1/16*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)
^(1/2)*x*c+c^2*x^2-1)*Ei(1,arccosh(c*x)+a/b)*exp((a+b*arccosh(c*x))/b)/(c*x+1)/c^4/(c*x-1)/b^2+1/16*(-c^2*x^2+
1)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*(arccosh(c*x)*exp(-a/b)*Ei(1,-arccosh(c*x)-a/b)*b+(c*x+1)^(1/2)*(c*x-1)^(
1/2)*b+exp(-a/b)*Ei(1,-arccosh(c*x)-a/b)*a+b*c*x)/c^4/b^2/(a+b*arccosh(c*x))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="maxima")

[Out]

-((c^2*x^5 - x^3)*(c*x + 1)*sqrt(c*x - 1) + (c^3*x^6 - c*x^4)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^3*x^2 + sqr
t(c*x + 1)*sqrt(c*x - 1)*a*b*c^2*x - a*b*c + (b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x - b^2*c)*log
(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))) + integrate(((5*c^3*x^5 - 2*c*x^3)*(c*x + 1)^(3/2)*(c*x - 1) + (10*c^4*x^
6 - 11*c^2*x^4 + 3*x^2)*(c*x + 1)*sqrt(c*x - 1) + (5*c^5*x^7 - 9*c^3*x^5 + 4*c*x^3)*sqrt(c*x + 1))*sqrt(-c*x +
 1)/(a*b*c^5*x^4 + (c*x + 1)*(c*x - 1)*a*b*c^3*x^2 - 2*a*b*c^3*x^2 + a*b*c + 2*(a*b*c^4*x^3 - a*b*c^2*x)*sqrt(
c*x + 1)*sqrt(c*x - 1) + (b^2*c^5*x^4 + (c*x + 1)*(c*x - 1)*b^2*c^3*x^2 - 2*b^2*c^3*x^2 + b^2*c + 2*(b^2*c^4*x
^3 - b^2*c^2*x)*sqrt(c*x + 1)*sqrt(c*x - 1))*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)*x^3/(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} \sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(-c**2*x**2+1)**(1/2)/(a+b*acosh(c*x))**2,x)

[Out]

Integral(x**3*sqrt(-(c*x - 1)*(c*x + 1))/(a + b*acosh(c*x))**2, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^3\,\sqrt {1-c^2\,x^2}}{{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(1 - c^2*x^2)^(1/2))/(a + b*acosh(c*x))^2,x)

[Out]

int((x^3*(1 - c^2*x^2)^(1/2))/(a + b*acosh(c*x))^2, x)

________________________________________________________________________________________